Education - Classes - Topics in Geophysics
... examples of papers that geophysics@pknu is concerned with
- Thorp, H. H. (2021). Public debate is good for science. Science, 371(6526), 213. doi:10.1126/science.abg4685
- Dance, A. (2021). Sharper signals: how machine learning is cleaning up microscopy images. Nature, 589(7841), 318-319. doi:10.1038/d41586-021-00023-0
General science
- Kang, T.-S., Baag, C.-E. (2004). The 29 May 2004, Mw = 5.1, offshore Uljin earthquake, Korea. Geosciences Journal, 8(2), 115-123. doi:10.1007/BF02910189
- Han, M., Kim, K.-H., Son, M., Kang, S. Y. (2017). Current microseismicity and generating faults in the Gyeongju area, southeastern Korea. Tectonophysics, 694, 414-423. doi:10.1016/j.tecto.2016.11.026
Earthquakes in Korea
- TBA (). . , (), -. doi:
Structure in Korea
- Böse, M., Julien‐Laferrière, S., Bossu, R., Massin, F. (2021). Near real-time earthquake line-source models derived from felt reports. Seismological Research Letters, xx(xx), xx-xx. doi:10.1785/0220200244
Hazard in Korea
- Cuellar, C. (2020). Students monitor campus noise in seismic silence. Eos, 101, doi:10.1029/2020EO152734
Social Seismology
- University of Maryland (2020). Scientists detect unexpected widespread structures near Earth's core.
- Miller, M. S. (2020). Mapping Earth's deepest secrets. Science, 368(6496), 1183-1184. doi:10.1126/science.abc3134
- Kim, D., Lekić, V., Ménard, B., Baron, D., Taghizadeh-Popp, M. (2020). Sequencing seismograms: A panoptic view of scattering in the core-mantle boundary region. Science, 368(6496), 1223-1228. doi:10.1126/science.aba8972
Deep Earth
- Costain, J. K. (2008). Intraplate seismicity, hydroseismicity, and predictions in hindsight. Seismological Research Letters, 79(4), 578-589. doi:10.1785/gssrl.79.4.578
- Davidsen, J., Schumann, A. Y., Naylor, M. (2013). Are scale-invariant stress orientations related to seismicity rates near the San Andreas fault? Geophysical Research Letters, 40(23), 6074-6078. doi:10.1002/2013GL057919
- Musumeci, C., Scarfì, L., Tusa, G., Barreca, G., Barberi, G., Cannavò, F., Gresta, S. (2020). Foreland seismicity associated with strike-slip faulting in southeastern Sicily, Italy: seismotectonic implications and seismic hazard assessment. Physics of the Earth and Planetary Interiors, 307, 106553. dot:10.1016/j.pepi.2020.106553
Seismicity
- Nelson, K. D. (1992). Are crustal thickness variations in old mountain belts like the Appalachians a consequence of lithospheric delamination? Geology, 20(6), 498-502. doi:10.1130/0091-7613(1992)020%3C0498:ACTVIO%3E2.3.CO;2
- Singh, S. K., Dattatrayam, R. S., Shapiro, N. M., Mandal, P., Pacheco, J. F., Midha, R. K. (1999). Crustal and upper mantle structure of Peninsular India and source parameters of the 21 May 1997, Jabalpur earthquake (Mw = 5.8): results from a new regional broadband network. Bulletin of the Seismological Society of America, 89(6), 1631–1641.
Crust, Mantle, or Lithosphere
- Curtis, A., Nicolson, H., Halliday, D., Trampert, J., Baptie, B. (2009). Virtual seismometers in the subsurface of the Earth from seismic interferometry. Nature Geoscience, 2(10), 700-704. doi:10.1038/ngeo615
Seismic interferometry
- Zhang, H., Thurber, C., Rowe, C. (2003). Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings. Bulletin of the Seismological Society of America, 93(5), 1904-1912. doi:10.1785/0120020241
- Ross, Z. E., Ben-Zion, Y. (2014). Automatic picking of direc P, S seismic phases and fault zone head waves. Geophysical Journal International, 199(1), 368-381. doi:10.1093/gji/ggu267
- Kalkan, E. (2016). An automatic P-phase arrival-time picker. Bulletin of the Seismological Society of America, 106(3), 971-986. doi:10.1785/0120150111
Detection, picking
- Jones, G. A., Kendall, J.-M., Bastow, I. D., Raymer, D. G. (2014). Locating microseismic events using borehole data. Geophysical Prospecting, 62(1), 34-49. doi:10.1111/1365-2478.12076
- Grigoli, F., Cesca, S., Krieger, L., Kriegerowski, M., Gammaldi, S., Horalek, J., Priolo, E., Dahm, T. (2016). Automated microseismic event location using Master-Event Waveform Stacking. Scientific Reports, 6, 25744. doi:10.1038/srep25744
Location
- López-Comino, J. A., Stich, D., Morales, J., Ferreira, A. M. G. (2016). Resolution of rupture directivity in weak events: 1-D versus 2-D source parameterizations for the 2011, Mw 4.6 and 5.2 Lorca earthquakes, Spain. Journal of Geophysical Research: Solid Earth, 121(9), 6608–6626. doi:10.1002/2016JB013227
- Kiratzi, A. (2018). The 12 June 2017 Mw 6.3 Lesvos Island (Aegean Sea) earthquake: slip model and directivity estimated with finite-fault inversion. Tectonophysics, 724–725, 1-10. doi:10.1016/j.tecto.2018.01.003
- He, X., Zhan, Z., Zhang, P., Zhang, D. (2018) Rupture directivity of the 18 April 2008 Mt. Carmel, Illinois, earthquake from modeling of local seismic waveforms. Bulletin of the Seismological Society of America, 108(6), 3278–3288. doi:10.1785/0120180156
Rupture directivity / finite-fault inversion
- Moss, R. E. S., Buelna, M., Stanton, K. V. (2018). Physical, analytical, and numerical modeling of reverse-fault displacement through near-surface soils. Bulletin of the Seismological Society of America, 108(6), 3149–3159. doi:10.1785/0120180067
Earthquake rupture and displacement
- Oye, V., Bungum, H., Roth, M. (2005). Source parameters and scaling relations for mining-related seismicity within the Pyhäsalmi Ore Mine, Finland. Bulletin of the Seismological Society of America, 95(3), 1011-1026. doi:10.1785/0120040170
- Bailey, I. W., Ben-Zion, Y. (2009). Statistics of earthquake stress drops on a heterogeneous fault in an elastic half-space. Bulletin of the Seismological Society of America, 99(3), 1786-1800. doi:10.1785/0120080254
- Hauksson, E. (2015). Average stress drops of southern California earthquakes in the context of crustal geophysics: implications for fault zone healing. Bulletin of the Seismological Society of America, 172(5), 1359-1370. doi:10.1007/s00024-014-0934-4
- Chounet, A., Vallée, M., Causse, M., Courboulex, F. (2018). Global catalog of earthquake rupture velocities shows anticorrelation between stress drop and rupture velocity. Tectonophysics, 733(), 148-158. doi:10.1016/j.tecto.2017.11.005
- Noda, H., Lapusta, N., Kanamori, H. (2013). Comparison of average stress drop measures for ruptures with heterogeneous stress change and implications for earthquake physics. Geophysical Journal International, 193(3), 1691–1712. doi:10.1093/gji/ggt074 - 은별: stress drop 분포, 사용한 식과 상수값, rectangular 가정 C 값에 대하여 질문
- Madariaga, R. (1977). Implications of stress-drop models of earthquakes for the inversion of stress drop from seismic observations. Pure and Applied Geophysics, 115(1-2), 301-316. doi:10.1007/BF01637111
- Drouet, S., Bouin, M.-P., Cotton, F. (2011). New moment magnitude scale, evidence of stress drop magnitude scaling and stochastic ground motion model for the French West Indies. Geophysical Journal International, 187(3), 1625-1644. doi:10.1111/j.1365-246X.2011.05219.x
- Hough, S. E., Lees, J. M., Monastero, F. (1999). Attenuation and Source Properties at the Coso Geothermal Area, California. Bulletin of the Seismological Society of America, 89(6), 1606-1619.
Source parameters
- Guilhem, A., Hutchings, L., Dreger, D. S., Johnson, L. R. (2014). Moment tensor inversions of M ~ 3 earthquakes in the Geysers geothermal fields, California. Journal of Geophysical Research: Solid Earth, 119(3), 2121-2137. doi:10.1002/2013JB010271
- Vavryčuk, V., Adamová, P. (2020). Non-double-couple moment tensors of earthquakes calculated using empirical Green’s functions. Seismological Research Letters, 91(1), 390-398. doi:10.1785/0220190154
Moment tensor inversion
- Zollo, A., Bernard, P. (1989). S-wave polarization inversion of the 15 October 1979, 23:19 Imperial Valley Aftershock: evidence for anisotropy and a simple source mechanism. Geophysical Research Letters, 16(9), 1047-1050. doi:10.1029/GL016i009p01047
- Zollo, A., Bernard, P. (1990). Correction to “S-wave polarization inversion of the 15 October 1979, 23:19 Imperial Valley Aftershock: evidence for anisotropy and a simple source mechanism”. Geophysical Research Letters, 17(3), 311-311. doi:10.1029/GL017i003p00311
- Zollo, A., Bernard, P. (1991). Fault mechanisms from near-source data: joint inversion of S polarizations and P polarities. Geophysical Journal International, 104(3), 441-451. doi:10.1111/j.1365-246X.1991.tb05692.x
- de Lorenzo, S., Giampiccolo, E., Martinez-Arevalo, C., Patanè, D., Romeo, A. (2010). Fault plane orientations of microearthquakes at Mt. Etna from the inversion of P-wave rise times. Journal of Volcanology and Geothermal Research, 189(3-4), 247-256. doi:10.1016/j.jvolgeores.2009.11.011 - 이걸 이용해서 stress inversion을 수행할 수 있는 코드를 만들어 보자.
Focal mechanisms
- Carvalho, J., Barros, L. V., Zahradník, J. (2016). Focal mechanisms and moment tensor magnitudes of micro-earthquakes in central Brazil by waveform inversion with quality assessment and inference of the local stress field. Journal of South American Earth Sciences, 71, 333-343. doi:10.1016/j.jsames.2015.07.020
- Wu, W.-J., Su, C.-M., Wen, S., Li, Y.-H., Liao, Y.-C., Peng, H.-C., Chen, C.-H. (2021). Microseismic monitoring and stress inversion in northeast Taiwan. Seismological Research Letters, xx, xx-xx. doi:10.1785/0220200262
Stress field
- Coutel, F., Mora, P. (1998). Simulation-based comparison of four site-response estimation technique. Bulletin of the Seismological Society of America, 88(1), 30-42.
- Parolai, S. (2018). κ0: origin and usability. Bulletin of the Seismological Society of America, 108(6), 3446-3456. doi:10.1785/012018013.
- Wang, S.-Y., Shi, Y., Jiang, W.-P., Yao, E.-L., Miao, Y. (2018). Estimating site fundamental period from shear‐wave velocity profile. Bulletin of the Seismological Society of America, 108(6), 3431–3445. doi:10.1785/0120180103.
Site response
- Boore, D. M., Stewart, J. P., Skarlatoudis, A. A., Seyhan, E., Margaris, B., Theodoulidis, N., Scordilis, E., Kalogeras, I., Klimis, N., Melis, N. S. (2020). A ground-motion prediction model for shallow crustal earthquakes in Greece. Bulletin of the Seismological Society of America, XX(), XX-XX, doi:10.1785/0120200270
Ground-motion relationship
- Hanks, T. C., Beroza, G. C., Toda, S. (2012). Have recent earthquakes exposed flaws in or misunderstandings of probabilistic seismic hazard analysis. Seismological Research Letters, 83(5), 759-764. doi:10.1785/0220120043
- Farajpour, Z., Kowsari, M., Pezeshk, S., Halldorsson, B. (2020). Ranking of ground‐motion models (GMMs) for use in probabilistic seismic hazard analysis for Iran based on an independent data set. Bulletin of the Seismological Society of America, xx(xx), xx-xx. doi:10.1785/0120200052
Seismic hazard
- The Sequencer
- Olivieri, M., Clinton, J. (2012). An almost fair comparison between Earthworm and SeisComP3. Seismological Research Letters, 83(4), 720-727. doi:10.1785/0220110111
- Triantafyllis, N., Sokos, E., Ilias, A., Zahradník, J. (2016). Scisola: automatic moment tensor solution for SeisComP3. Seismological Research Letters, 87(1), 157-163. doi:10.1785/0220150065
- Bueno, A., Zuccarello, L., Díaz-Moreno, A., Woollam, J., Titos, M., Benítez, C., Álvarez, I., Prudencio, J., De Angelis, S. (2020). PICOSS: Python interface for the classification of seismic signals. Computers and Geosciences, 142, 104531. doi:10.1016/j.cageo.2020.104531
- Tian, Y., Zheng, Y. (2020). AstroSeis: a 3D boundary element modeling code for seismic wavefields in irregular asteroids and bodies. Seismological Research Letters, 91(6), 3528–3538. doi:10.1785/0220200145
- Bahavar, M., Spica, Z. J., Sánchez‐Sesma, F. J., Trabant, C., Zandieh, A., Toro, G. (2020). Horizontal-to-vertical spectral ratio (HVSR) IRIS station toolbox. Seismological Research Letters, 91(6), 3539–3549. doi:10.1785/0220200047
- Clements, T., Denolle, M. A. (2020). SeisNoise.jl: ambient seismic noise cross correlation on the CPU and GPU in Julia. Seismological Research Letters, XX(XX), XX-XX. doi:10.1785/0220200192
- Taroni, M., Selva, J. (2020). GR_EST: an OCTAVE/MATLAB Toolbox to estimate Gutenberg-Richter law parameters and their uncertainties. Seismological Research Letters, XX(XX), XX-XX. doi:10.1785/0220200028
- Bird, P. (1999). Thin-plate and thin-shell finite-element programs for forward dynamic modeling of plate deformation and faulting. Computers & Geosciences, 25(4), 383-394. doi:10.1016/S0098-3004(98)00142-3
Softwares
- Ross, Z. E., Yue, Y., Meier, M.-A., Hauksson, E., Heaton, T. H. (2019). PhaseLink: a deep learning approach to seismic phase association. Journal of Geophysical Research: Solid Earth, 124(1), 856-869. doi:10.1029/2018JB016674
Machine learning in seismology
- Subramanian, V., Wang, L., Lee, E.-J., Chen, P. (2010). Rapid processing of synthetic seismograms using Windows Azure Cloud. 2nd IEEE International Conference on Cloud Computing Technology and Sciences, 193-200. doi:10.1109/CloudCom.2010.110
- MacCarthy, J., Marcillo, O., Trabant, C. (2009). Putting the cloud to work for seismology. Eos, 100. doi:10.1029/2019EO119741
Cloud computing
- Hainzl, S., Fischer, T. (2002). Indications for a successively triggered rupture growth underlying the 2000 earthquake swarm in Vogtland/NW Bohemia. Journal of Geophysical Research: Solid Earth, 107(B12), 2338. doi:10.1029/2002JB001865
- Hainzl, S. (2004). Seismicity patterns of earthquake swarms due to fluid intrusion and stress triggering. Geophysical Journal International, 159(3), 1090–1096. doi:10.1111/j.1365-246X.2004.02463.x
- Heinicke, J., Fischer, T., Gaupp, R., Götze, J., Koch, U., Konietzky, H., Stanek, K.-P. (2009). Hydrothermal alteration as a trigger mechanism for earthquake swarms: the Vogtland/NW Bohemia region as a case study. Geophysical Journal International, 178(1), 1-13. doi:10.1111/j.1365-246X.2009.04138.x
- 강지훈, 이덕선, 류충렬, 고상모, 지세정 (2011). 해남 모이산 천열수 금-은 광화대의 지질구조와 광화작용 당시의 지구조환경. 자원환경지질, 44(5), 413-431. doi:10.9719/EEG.2011.44.5.413
- Vavryčuk, V., Hrubcová, P. (2017). Seismological evidence of fault weakening due to erosion by fluids from observations of intraplate earthquake swarms. Journal of Geophysical Research: Solid Earth, 122(5), 3701-3718. doi: 10.1002/2017JB013958
- Ruhl, C. J., Abercrombie, R. E., Smith, K. D. (2017). Spatiotemporal variation of stress drop during the 2008 Mogul, Nevada, earthquake swarm. Journal of Geophysical Research: Solid Earth, 122(10), 8163-8180. doi:10.1002/2017JB014601
Lab00
- Brenguier, F., Kowalski, P., Ackerley, N., Nakata, N., Boué, P., Campillo, M., Larose, E., Rambaud, S., Pequegnat, C., Lecocq, T., Roux, P., Ferrazzini, V., Villeneuve, N., Shapiro, N. M., Chaput, J. (2016). Toward 4D noise-based seismic probing of volcanoes: perspectives from a large-N experiment on Piton de la Fournaise volcano. Seismological Research Letters, 87(1), 15-25. doi:10.1785/0220150173
- Nakata, N., Boué, P., Brenguier, F., Roux, P., Ferrazzini, V., Campillo, M. (2016). Body and surface wave reconstruction from seismic noise correlations between arrays at Piton de la Fournaise volcano. Geophysical Research Letters, 43(3), 1047-1054. doi:10.1002/2015GL066997
Lab01
- Jeddi, Z., Tryggvason, A., Gudmundsson, Ó. (2016). The Katla volcanic system imaged using local earthquakes recorded with a temporary seismic network. Journal of Geophysical Research: Solid Earth, 121(10), 7230–7251. doi:10.1002/2016JB013044
Lab02
- CSBDeep - a deep learning toolbox for microscopy image restoration and analysis.
- Coursera - an online education firm.
- DenoisEM - fast and advanced image denoising of large-scale 3D electron microscopy data.
- Noise2Void - learning denoising from single noisy images.
- Noise2Self - blind denoising by self-supervision.
- StructN2V - removing structured noise with self-supervised blind-spot networks.
Lab03: Insight from other fields
Classes
Related News
Vehicula fermentum ligula at pretium. Suspendisse semper iaculis eros, eu aliquam iaculis. Phasellus ultrices diam sit amet orci lacinia sed consequat.